Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 382(2): 208-222, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764327

RESUMO

X-linked adrenoleukodystrophy (ALD) is a severe orphan disease caused by mutations in the peroxisomal ABCD1 transporter gene, leading to toxic accumulation of Very Long-Chain Fatty Acids (VLCFA - in particular C26:0) resulting in inflammation, mitochondrial dysfunction and demyelination. AMP-activated protein kinase (AMPK) is downregulated in ALD, and its activation is implicated as a therapeutic target. PXL770 is the first direct allosteric AMPK activator with established clinical efficacy and tolerability. Methods: We investigated its effects in ALD patient-derived fibroblasts/lymphocytes and Abcd1 KO mouse glial cells. Readouts included VLCFA levels, mitochondrial function and mRNA levels of proinflammatory genes and compensatory transporters (ABCD2-3). After PXL770 treatment in Abcd1 KO mice, we assessed VLCFA levels in tissues, sciatic nerve axonal morphology by electronic microscopy and locomotor function by open-field/balance-beam tests. Results: In patients' cells and Abcd1 KO glial cells, PXL770 substantially decreased C26:0 levels (by ∼90%), improved mitochondrial respiration, reduced expression of multiple inflammatory genes and induced expression of ABCD2-3 In Abcd1 KO mice, PXL770 treatment normalized VLCFA in plasma and significantly reduced elevated levels in brain (-25%) and spinal cord (-32%) versus untreated (P < 0.001). Abnormal sciatic nerve axonal morphology was also improved along with amelioration of locomotor function. Conclusion: Direct AMPK activation exerts beneficial effects on several hallmarks of pathology in multiple ALD models in vitro and in vivo, supporting clinical development of PXL770 for this disease. Further studies would be needed to overcome limitations including small sample size for some parameters, lack of additional in vivo biomarkers and incomplete pharmacokinetic characterization. SIGNIFICANCE STATEMENT: Adrenoleukodystrophy is a rare and debilitating condition with no approved therapies, caused by accumulation of very long-chain fatty acids. AMPK is downregulated in the disease and has been implicated as a potential therapeutic target. PXL770 is a novel clinical stage direct AMPK activator. In these studies, we used PXL770 to achieve preclinical validation of direct AMPK activation for this disease - based on correction of key biochemical and functional readouts in vitro and in vivo, thus supporting clinical development.


Assuntos
Adrenoleucodistrofia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Monofosfato de Adenosina , Adenilato Quinase/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos
2.
J Inherit Metab Dis ; 45(4): 832-847, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35510808

RESUMO

X-linked adrenoleukodystrophy (ALD) results from ABCD1 gene mutations which impair Very Long Chain Fatty Acids (VLCFA; C26:0 and C24:0) peroxisomal import and ß-oxidation, leading to accumulation in plasma and tissues. Excess VLCFA drives impaired cellular functions (e.g. disrupted mitochondrial function), inflammation, and neurodegeneration. Major disease phenotypes include: adrenomyeloneuropathy (AMN), progressive spinal cord axonal degeneration, and cerebral ALD (C-ALD), inflammatory white matter demyelination and degeneration. No pharmacological treatment is available to-date for ALD. Pioglitazone, an anti-diabetic thiazolidinedione, exerts potential benefits in ALD models. Its mechanisms are genomic (PPARγ agonism) and nongenomic (mitochondrial pyruvate carrier-MPC, long-chain acyl-CoA synthetase 4-ACSL4, inhibition). However, its use is limited by PPARγ-driven side effects (e.g. weight gain, edema). PXL065 is a clinical-stage deuterium-stabilized (R)-enantiomer of pioglitazone which lacks PPARγ agonism but retains MPC activity. Here, we show that incubation of ALD patient-derived cells (both AMN and C-ALD) and glial cells from Abcd1-null mice with PXL065 resulted in: normalization of elevated VLCFA, improved mitochondrial function, and attenuated indices of inflammation. Compensatory peroxisomal transporter gene expression was also induced. Additionally, chronic treatment of Abcd1-null mice lowered VLCFA in plasma, brain and spinal cord and improved both neural histology (sciatic nerve) and neurobehavioral test performance. Several in vivo effects of PXL065 exceeded those achieved with pioglitazone. PXL065 was confirmed to lack PPARγ agonism but retained ACSL4 activity of pioglitazone. PXL065 has novel actions and mechanisms and exhibits a range of potential benefits in ALD models; further testing of this molecule in ALD patients is warranted.


Assuntos
Adrenoleucodistrofia , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/tratamento farmacológico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Animais , Deutério/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos não Esterificados , Inflamação , Camundongos , Camundongos Knockout , PPAR gama/metabolismo , Pioglitazona
3.
Physiol Rep ; 10(5): e15151, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35274817

RESUMO

The global prevalence of type 2 diabetes (T2D) is expected to exceed 642 million people by 2040. Metformin is a widely used biguanide T2D therapy, associated with rare but serious events of lactic acidosis, in particular with predisposing conditions (e.g., renal failure or major surgery). Imeglimin, a recently approved drug, is the first in a new class (novel mode of action) of T2D medicines. Although not a biguanide, Imeglimin shares a chemical moiety with Metformin and also modulates mitochondrial complex I activity, a potential mechanism for Metformin-mediated lactate accumulation. We interrogated the potential for Imeglimin to induce lacticacidosis in relevant animal models and further assessed differences in key mechanisms known for Metformin's effects. In a dog model of major surgery, Metformin or Imeglimin (30-1000 mg/kg) was acutely administered, only Metformin-induced lactate accumulation and pH decrease leading to lactic acidosis with fatality at the highest dose. Rats with gentamycin-induced renal insufficiency received Metformin or Imeglimin (50-100 mg/kg/h), only Metformin increased lactatemia and H+ concentrations with mortality at higher doses. Plasma levels of Metformin and Imeglimin were similar in both models. Mice were chronically treated with Metformin or Imeglimin 200 mg/kg bid. Only Metformin produced hyperlactatemia after acute intraperitoneal glucose loading. Ex vivo measurements revealed higher mitochondrial complex I inhibition with Metformin versus slight effects with Imeglimin. Another mechanism implicated in Metformin's effects on lactate production was assessed: in isolated rat, liver mitochondria exposed to Imeglimin or Metformin, only Metformin (50-250 µM) inhibited the mitochondrial glycerol-3-phosphate dehydrogenase (mGPDH). In liver samples from chronically treated mice, measured mGPDH activity was lower with Metformin versus Imeglimin. These data indicate that the risk of lactic acidosis with Imeglimin treatment may be lower than with Metformin and confirm that the underlying mechanisms of action are distinct, supporting its potential utility for patients with predisposing conditions.


Assuntos
Acidose Láctica , Diabetes Mellitus Tipo 2 , Metformina , Insuficiência Renal , Acidose Láctica/induzido quimicamente , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Cães , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Ácido Láctico , Metformina/efeitos adversos , Metformina/uso terapêutico , Camundongos , Ratos , Triazinas
4.
Hepatol Commun ; 6(1): 101-119, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34494384

RESUMO

No approved therapies are available for nonalcoholic steatohepatitis (NASH). Adenosine monophosphate-activated protein kinase (AMPK) is a central regulator of cell metabolism; its activation has been suggested as a therapeutic approach to NASH. Here we aimed to fully characterize the potential for direct AMPK activation in preclinical models and to determine mechanisms that could contribute to efficacy for this disease. A novel small-molecule direct AMPK activator, PXL770, was used. Enzyme activity was measured with recombinant complexes. De novo lipogenesis (DNL) was quantitated in vivo and in mouse and human primary hepatocytes. Metabolic efficacy was assessed in ob/ob and high-fat diet-fed mice. Liver histology, biochemical measures, and immune cell profiling were assessed in diet-induced NASH mice. Direct effects on inflammation and fibrogenesis were assessed using primary mouse and human hepatic stellate cells, mouse adipose tissue explants, and human immune cells. PXL770 directly activated AMPK in vitro and reduced DNL in primary hepatocytes. In rodent models with metabolic syndrome, PXL770 improved glycemia, dyslipidemia, and insulin resistance. In mice with NASH, PXL770 reduced hepatic steatosis, ballooning, inflammation, and fibrogenesis. PXL770 exhibited direct inhibitory effects on pro-inflammatory cytokine production and activation of primary hepatic stellate cells. Conclusion: In rodent models, direct activation of AMPK is sufficient to produce improvements in all core components of NASH and to ameliorate related hyperglycemia, dyslipidemia, and systemic inflammation. Novel properties of direct AMPK activation were also unveiled: improved insulin resistance and direct suppression of inflammation and fibrogenesis. Given effects also documented in human cells (reduced DNL, suppression of inflammation and stellate cell activation), these studies support the potential for direct AMPK activation to effectively treat patients with NASH.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Ativação Enzimática/efeitos dos fármacos , Fibrose/fisiopatologia , Hepatócitos/metabolismo , Humanos , Inflamação/fisiopatologia , Insulina/sangue , Lipogênese/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Piridonas/farmacologia , Tetra-Hidronaftalenos/farmacologia
5.
J Exp Biol ; 223(Pt 21)2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-32967994

RESUMO

At fledging, juvenile king penguins (Aptenodytes patagonicus) must overcome the tremendous energetic constraints imposed by their marine habitat, including during sustained extensive swimming activity and deep dives in cold seawater. Both endurance swimming and skeletal muscle thermogenesis require high mitochondrial respiratory capacity while the submerged part of dive cycles repeatedly and greatly reduces oxygen availability, imposing a need for solutions to conserve oxygen. The aim of the present study was to determine in vitro whether skeletal muscle mitochondria become more 'thermogenic' to sustain heat production or more 'economical' to conserve oxygen in sea-acclimatized immature penguins (hereafter 'immatures') compared with terrestrial juveniles. Rates of mitochondrial oxidative phosphorylation were measured in permeabilized fibers and mitochondria from the pectoralis muscle. Mitochondrial ATP synthesis and coupling efficiency were measured in isolated muscle mitochondria. The mitochondrial activities of respiratory chain complexes and citrate synthase were also assessed. The results showed that respiration, ATP synthesis and respiratory chain complex activities in pectoralis muscles were increased by sea acclimatization. Furthermore, muscle mitochondria were on average 30-45% more energy efficient in sea-acclimatized immatures than in pre-fledging juveniles, depending on the respiratory substrate used (pyruvate, palmitoylcarnitine). Hence sea acclimatization favors the development of economical management of oxygen, decreasing the oxygen needed to produce a given amount of ATP. This mitochondrial phenotype may improve dive performance during the early marine life of king penguins, by extending their aerobic dive limit.


Assuntos
Spheniscidae , Animais , Metabolismo Energético , Mitocôndrias/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo
6.
Free Radic Biol Med ; 143: 545-559, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518685

RESUMO

Mitochondria are important sources of superoxide and hydrogen peroxide in cell signaling and disease. In particular, superoxide/hydrogen peroxide production during reverse electron transport from ubiquinol to NAD+ though Complex I is implicated in several physiological and pathological processes. S1QELs are small molecules that suppress superoxide/hydrogen peroxide production at Complex I without affecting forward electron transport. Their mechanism of action is disputed. To test different mechanistic models, we compared the effects of two inhibitors of Complex I electron transport (piericidin A and rotenone) and two S1QELs from different chemical families on superoxide/hydrogen peroxide production and electron transport by Complex I in isolated mitochondria. Piericidin A and rotenone (and S1QEL1.1 at higher concentrations) prevented superoxide/hydrogen peroxide production from sites IQ and IF in Complex I by inhibiting reverse electron transport into the complex. S1QELs decreased the potency of electron transport inhibition by piericidin A and rotenone, suggesting that S1QELs bind directly to Complex I. S1QEL2.1 (and S1QEL1.1 at lower concentrations) suppressed site IQ without affecting reverse electron transport or site IF, showing that sites IQ and IF are distinct, and that S1QELs do not work simply by decreasing reverse electron transport to site IF (or site IQ). S1QELs did not affect the reduction of NAD+ or the rate of site IF driven by reverse electron transport, therefore they do not alter the driving forces for reverse electron transport and that is not how they suppress site IQ. We conclude that S1QELs bind to Complex I to influence the conformation of the piericidin A and rotenone binding sites and directly suppress superoxide/hydrogen peroxide production at site IQ, which is a separate site from site IF.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Elétrons , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Superóxidos/metabolismo , Animais , Transporte de Elétrons , Feminino , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Ratos , Ratos Wistar
8.
J Biol Chem ; 292(41): 16804-16809, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28842493

RESUMO

Mitochondrial production of superoxide and hydrogen peroxide is potentially important in cell signaling and disease. Eleven distinct mitochondrial sites that differ markedly in capacity are known to leak electrons to oxygen to produce O2̇̄ and/or H2O2 We discuss their contributions to O2̇̄/H2O2 production under native conditions in mitochondria oxidizing different substrates and in conditions mimicking physical exercise and the changes in their capacities after caloric restriction. We review the use of S1QELs and S3QELs, suppressors of mitochondrial O2̇̄/H2O2 generation that do not inhibit oxidative phosphorylation, as tools to characterize the contributions of specific sites in situ and in vivo.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Fisiológico , Superóxidos/metabolismo , Animais , Restrição Calórica , Humanos , Mitocôndrias/patologia
9.
Nat Med ; 23(8): 990-996, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650457

RESUMO

The endocrine-derived hormone fibroblast growth factor (FGF) 19 has recently emerged as a potential target for treating metabolic disease. Given that skeletal muscle is a key metabolic organ, we explored the role of FGF19 in that tissue. Here we report a novel function of FGF19 in regulating skeletal muscle mass through enlargement of muscle fiber size, and in protecting muscle from atrophy. Treatment with FGF19 causes skeletal muscle hypertrophy in mice, while physiological and pharmacological doses of FGF19 substantially increase the size of human myotubes in vitro. These effects were not elicited by FGF21, a closely related endocrine FGF member. Both in vitro and in vivo, FGF19 stimulates the phosphorylation of the extracellular-signal-regulated protein kinase 1/2 (ERK1/2) and the ribosomal protein S6 kinase (S6K1), an mTOR-dependent master regulator of muscle cell growth. Moreover, mice with a skeletal-muscle-specific genetic deficiency of ß-Klotho (KLB), an obligate co-receptor for FGF15/19 (refs. 2,3), were unresponsive to the hypertrophic effect of FGF19. Finally, in mice, FGF19 ameliorates skeletal muscle atrophy induced by glucocorticoid treatment or obesity, as well as sarcopenia. Taken together, these findings provide evidence that the enterokine FGF19 is a novel factor in the regulation of skeletal muscle mass, and that it has therapeutic potential for the treatment of muscle wasting.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Atrofia Muscular , Obesidade , Sarcopenia , Animais , Western Blotting , Tamanho Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Força da Mão , Humanos , Imuno-Histoquímica , Imunoprecipitação , Técnicas In Vitro , Proteínas Klotho , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Tamanho do Órgão/efeitos dos fármacos , Proteínas Recombinantes/farmacologia , Transcriptoma
10.
Artigo em Inglês | MEDLINE | ID: mdl-28647176

RESUMO

Fasted endothermic vertebrates must develop physiological responses to maximize energy conservation and survival. The aim of this study was to determine the effect of 1-wk. fasting in 5-wk. old ducklings (Cairina moschata) from whole-body resting metabolic rate and body temperature to metabolic phenotype of tissues and mitochondrial coupling efficiency. At the level of whole organism, the mass-specific metabolic rate of ducklings was decreased by 40% after 1-wk. of fasting, which was associated with nocturnal Tb declines and shallow diurnal hypothermia during fasting. At the cellular level, fasting induced a large reduction in liver, gastrocnemius (oxidative) and pectoralis (glycolytic) muscle masses together with a fuel selection towards lipid oxidation and ketone body production in liver and a lower glycolytic phenotype in skeletal muscles. At the level of mitochondria, fasting induced a reduction of oxidative phosphorylation activities and an up-regulation of coupling efficiency (+30% on average) in liver and skeletal muscles. The present integrative study shows that energy conservation in fasted ducklings is mainly achieved by an overall reduction in mitochondrial activity and an increase in mitochondrial coupling efficiency, which would, in association with shallow hypothermia, increase the conservation of endogenous fuel stores during fasting.


Assuntos
Jejum , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Regulação para Cima , Animais , Patos , Humanos , Oxirredução
11.
Free Radic Biol Med ; 97: 577-587, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449544

RESUMO

Repeated deep dives are highly pro-oxidative events for air-breathing aquatic foragers such as penguins. At fledging, the transition from a strictly terrestrial to a marine lifestyle may therefore trigger a complex set of anti-oxidant responses to prevent chronic oxidative stress in immature penguins but these processes are still undefined. By combining in vivo and in vitro approaches with transcriptome analysis, we investigated the adaptive responses of sea-acclimatized (SA) immature king penguins (Aptenodytes patagonicus) compared with pre-fledging never-immersed (NI) birds. In vivo, experimental immersion into cold water stimulated a higher thermogenic response in SA penguins than in NI birds, but both groups exhibited hypothermia, a condition favouring oxidative stress. In vitro, the pectoralis muscles of SA birds displayed increased oxidative capacity and mitochondrial protein abundance but unchanged reactive oxygen species (ROS) generation per g tissue because ROS production per mitochondria was reduced. The genes encoding oxidant-generating proteins were down-regulated in SA birds while mRNA abundance and activity of the main antioxidant enzymes were up-regulated. Genes encoding proteins involved in repair mechanisms of oxidized DNA or proteins and in degradation processes were also up-regulated in SA birds. Sea life also increased the degree of fatty acid unsaturation in muscle mitochondrial membranes resulting in higher intrinsic susceptibility to ROS. Oxidative damages to protein or DNA were reduced in SA birds. Repeated experimental immersions of NI penguins in cold-water partially mimicked the effects of acclimatization to marine life, modified the expression of fewer genes related to oxidative stress but in a similar way as in SA birds and increased oxidative damages to DNA. It is concluded that the multifaceted plasticity observed after marine life may be crucial to maintain redox homeostasis in active tissues subjected to high pro-oxidative pressure in diving birds. Initial immersions in cold-water may initiate an hormetic response triggering essential changes in the adaptive antioxidant response to marine life.


Assuntos
Antioxidantes/metabolismo , Hormese , Spheniscidae/fisiologia , Termotolerância , Animais , Metabolismo Basal , Metabolismo Energético , Peróxido de Hidrogênio/metabolismo , Mitocôndrias Musculares/metabolismo , Oxirredução
12.
J Comp Physiol B ; 186(5): 639-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26924130

RESUMO

The passage from shore to marine life is a critical step in the development of juvenile penguins and is characterized by a fuel selection towards lipid oxidation concomitant to an enhancement of lipid-induced thermogenesis. However, mechanisms of such thermogenic improvement at fledging remain undefined. We used two different groups of pre-fledging king penguins (Aptenodytes patagonicus) to investigate the specific contribution of cold exposure during water immersion to lipid metabolism. Terrestrial penguins that had never been immersed in cold water were compared with experimentally cold-water immersed juveniles. Experimentally immersed penguins underwent ten successive immersions at approximately 9-10 °C for 5 h over 3 weeks. We evaluated adaptive thermogenesis by measuring body temperature, metabolic rate and shivering activity in fully immersed penguins exposed to water temperatures ranging from 12 to 29 °C. Both never-immersed and experimentally immersed penguins were able to maintain their homeothermy in cold water, exhibiting similar thermogenic activity. In vivo, perfusion of lipid emulsion at thermoneutrality induced a twofold larger calorigenic response in experimentally immersed than in never-immersed birds. In vitro, the respiratory rates and the oxidative phosphorylation efficiency of isolated muscle mitochondria were not improved with cold-water immersions. The present study shows that acclimation to cold water only partially reproduced the fuel selection towards lipid oxidation that characterizes penguin acclimatization to marine life.


Assuntos
Aclimatação/fisiologia , Metabolismo dos Lipídeos/fisiologia , Spheniscidae/fisiologia , Termogênese/fisiologia , Animais , Temperatura Baixa , Feminino , Lipídeos/sangue , Masculino , Mitocôndrias Musculares/metabolismo , Água
13.
J Exp Biol ; 218(Pt 15): 2427-34, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26026038

RESUMO

Starvation is particularly challenging for endotherms that remain active in cold environments or during winter. The aim of this study was to determine whether fasting-induced mitochondrial coupling flexibility depends upon the phenotype of skeletal muscles. The rates of oxidative phosphorylation and mitochondrial efficiency were measured in pectoralis (glycolytic) and gastrocnemius (oxidative) muscles from cold-acclimated ducklings (Cairina moschata). Pyruvate and palmitoyl-l-carnitine were used in the presence of malate as respiratory substrates. Plasma metabolites, skeletal muscle concentrations of triglycerides, glycogen and total protein and mitochondrial levels of oxidative phosphorylation complexes were also quantified. Results from ad libitum fed ducklings were compared with those from ducklings that were fasted for 4 days. During the 4 days of nutritional treatment, birds remained in the cold, at 4°C. The 4 days of starvation preferentially affected the pectoralis muscles, inducing an up-regulation of mitochondrial efficiency, which was associated with a reduction of both total muscle and mitochondrial oxidative phosphorylation protein, and with an increase of intramuscular lipid concentration. By contrast, fasting decreased the activity of oxidative phosphorylation but did not alter the coupling efficiency and protein expression of mitochondria isolated from the gastrocnemius muscles. Hence, the adjustment of mitochondrial efficiency to fasting depends upon the muscle phenotype of cold-acclimated birds. Furthermore, these results suggest that the reduced cost of mitochondrial ATP production in pectoralis muscles may trigger lipid storage within this tissue and help to sustain an important metabolic homeostatic function of skeletal muscles, which is to maintain levels of amino acids in the circulation during the fast.


Assuntos
Temperatura Baixa , Patos/fisiologia , Músculo Esquelético/metabolismo , Aclimatação/fisiologia , Animais , Privação de Alimentos , Metabolismo dos Lipídeos , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/metabolismo , Fosforilação Oxidativa , Fenótipo , Inanição/metabolismo
14.
J Exp Biol ; 217(Pt 15): 2691-7, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24803465

RESUMO

Energy conservation is a key priority for organisms that live in environments with seasonal shortages in resource supplies or that spontaneously fast during their annual cycle. The aim of this study was to determine whether the high fasting endurance of winter-acclimatized king penguin chicks (Aptenodytes patagonicus) is associated with an adjustment of mitochondrial bioenergetics in pectoralis muscle, the largest skeletal muscle in penguins. The rates of mitochondrial oxygen consumption, and ATP synthesis and mitochondrial efficiency (ATP/O ratio) were measured in winter-acclimatized chicks. We used pyruvate/malate and palmitoyl-l-carnitine/malate as respiratory substrates and results from naturally fasted chicks were compared to experimentally re-fed chicks. Bioenergetics analysis of pectoralis muscle revealed that mitochondria are on average 15% more energy efficient in naturally fasted than in experimentally fed chicks, indicating that fasted birds consume less nutrients to sustain their energy-demanding processes. We also found that moderate reductions in temperature from 38°C to 30°C further increase by 23% the energy coupling efficiency at the level of mitochondria, suggesting that king penguin chicks realize additional energy savings while becoming hypothermic during winter. It has been calculated that this adjustment of mitochondrial efficiency in skeletal muscle may contribute to nearly 25% of fasting-induced reduction in mass-specific metabolic rate measured in vivo. The present study shows that the regulation of mitochondrial efficiency triggers the development of an economical management of resources, which would maximize the conservation of endogenous fuel stores by decreasing the cost of living in fasted winter-acclimatized king penguin chicks.


Assuntos
Jejum/fisiologia , Mitocôndrias Musculares , Spheniscidae/fisiologia , Aclimatação/fisiologia , Animais , Temperatura Corporal/fisiologia , Peso Corporal , Metabolismo Energético , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Fenótipo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...